Exercise 217

The velocity V (in centimeters per second) of blood in an artery at a distance $x \mathrm{~cm}$ from the center of the artery can be modeled by the function $V=f(x)=500\left(0.04-x^{2}\right)$ for $0 \leq x \leq 0.02$.
a. Find $x=f^{-1}(V)$
b. Interpret what the inverse function is used for.
c. Find the distance from the center of an artery with a velocity of $15 \mathrm{~cm} / \mathrm{sec}, 10 \mathrm{~cm} / \mathrm{sec}$, and $5 \mathrm{~cm} / \mathrm{sec}$.

Solution

Solve the given function for x.

$$
V=500\left(0.04-x^{2}\right)
$$

Divide both sides by 500 .

$$
\frac{V}{500}=0.04-x^{2}
$$

Subtract 0.04 from both sides.

$$
\frac{V}{500}-0.04=-x^{2}
$$

Multiply both sides by -1 .

$$
0.04-\frac{V}{500}=x^{2}
$$

Take the square root of both sides.

$$
\pm \sqrt{0.04-\frac{V}{500}}=x
$$

Therefore, choosing the positive sign since $0 \leq x \leq 0.2$,

$$
x=f^{-1}(V)=\sqrt{0.04-\frac{V}{500}} .
$$

The inverse function is used when you have a velocity, and you want to know the distance from the center of an artery.

$$
\begin{array}{lll}
V=15 \frac{\mathrm{~cm}}{\mathrm{~s}} & \Rightarrow & x=\sqrt{0.04-\frac{15}{500}}=0.1 \mathrm{~cm} \\
V=10 \frac{\mathrm{~cm}}{\mathrm{~s}} & \Rightarrow & x=\sqrt{0.04-\frac{10}{500}} \approx 0.141 \mathrm{~cm} \\
V=5 \frac{\mathrm{~cm}}{\mathrm{~s}} & \Rightarrow & x=\sqrt{0.04-\frac{5}{500}} \approx 0.173 \mathrm{~cm}
\end{array}
$$

